Gradient preemphasis calibration in diffusion-weighted echo-planar imaging.
نویسندگان
چکیده
This article describes a method which enables fast and objective pulse-sequence-specific preemphasis calibration, using standard pulse sequences and system hardware. The method is based on a k-space measurement technique, and has been applied to single-shot, diffusion-weighted, spin-echo, echo-planar imaging (DW-SE-EPI), which is particularly sensitive to eddy-current-induced image distortions. The efficiency of the technique was demonstrated not only by the reduction of eddy-current fields to a negligible level using full preemphasis compensation, but also by the fact that adjustment of the slow time-base alone sufficed for the practical elimination of image distortions in the DW-SE-EPI images and the subsequent diffusion tensor maps (in a phantom and a human brain). By seeking to eliminate directly the effect of eddy-current-induced phase shifts during the EPI data collection, the method is free of the complications and restrictions associated with other eddy-current correction techniques for DW-SE-EPI (such as acquisition of additional calibration scans, intense postprocessing, extensive pulse-sequence modifications), making their use redundant.
منابع مشابه
Automatic gradient preemphasis adjustment: a 15-minute journey to improved diffusion-weighted echo-planar imaging.
Image distortion caused by gradient eddy currents is a major problem in the use of diffusion tensor imaging (DTI), as using the uncorrected images for calculation of apparent diffusion coefficient (ADC) and diffusion anisotropy will result in areas of artificially increased anisotropy and ADC at the edge of the images, as well as decreased spatial resolution and accuracy in ADC computations ove...
متن کاملCorrecting High Order Eddy Current Induced Distortion for Diffusion Weighted Echo Planar Imaging
INTRODUCTION It is well known that diffusion weighted echo planar imaging (DW-EPI) often suffers from direction dependent distortions due to diffusion gradient generated eddy currents. These distortions, if not corrected, can lead to misregistration among DW images of different directions and inaccuracies in any post processing operations involving DW image combination. Dual spin echo DW-EPI [1...
متن کاملElimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients.
Small gradient fields resulting from incompletely canceled eddy currents can cause geometric distortion in echo-planar images. Although this distortion is negligible in most echoplanar applications, the large gradient pulses used in diffusion-weighted echo-planar imaging can result in significant image distortion. In this report, it is shown that this distortion can be significantly reduced by ...
متن کاملThe b matrix in diffusion tensor echo-planar imaging.
In diffusion tensor imaging (DTI) an effective diffusion tensor in each voxel is measured by using a set of diffusion-weighted images (DWIs) in which diffusion gradients are applied in a multiplicity of oblique directions. However, to estimate the diffusion tensor accurately, one must account for the effects of all imaging and diffusion gradient pulses on each signal echo, which are embodied in...
متن کاملPrevention of motion-induced signal loss in diffusion-weighted echo-planar imaging by dynamic restoration of gradient moments.
PURPOSE Head motion is a significant problem in diffusion-weighted imaging as it may cause signal attenuation due to residual dephasing during strong diffusion encoding gradients even in single-shot acquisitions. Here, we present a new real-time method to prevent motion-induced signal loss in DWI of the brain. METHODS The method requires a fast motion tracking system (optical in the current i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 44 4 شماره
صفحات -
تاریخ انتشار 2000